Semistability of graph products

نویسندگان

چکیده

A {\it graph product} $G$ on a $\Gamma$ is group defined as follows: For each vertex $v$ of there corresponding non-trivial $G_v$. The the quotient free product $G_v$ by commutation relations $[G_v,G_w]=1$ for all adjacent and $w$ in $\Gamma$. finitely presented has semistable fundamental at $\infty$} if some (equivalently any) finite connected CW-complex $X$ with $\pi_1(X)=G$, universal cover $\tilde X$ property that any two proper rays are properly homotopic. class groups $\infty$ known to contain many other classes groups, but it 40 year old question whether or not have $\infty$. Our main theorem combination result. It states presented, then non-semistable only such semistable, subgroup generated vertices $lk(v)$ complete finite). Hence one knows which finite, an elementary inspection determines

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concerning the semistability of tensor products in Arakelov geometry

— We study the semistability of the tensor product of hermitian vector bundles by using the ε-tensor product and the geometric (semi)stability of vector subspaces in the tensor product of two vector spaces. Notably, for any number field K and any hermitian vector bundles E and F over SpecOK , we show that the maximal slopes of E, F , and E ⊗ F satisfy the following inequality : μ̂max(E ⊗ F ) 6 μ̂...

متن کامل

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

On the Zagreb and Eccentricity Coindices of Graph Products

The second Zagreb coindex is a well-known graph invariant defined as the total degree product of all non-adjacent vertex pairs in a graph. The second Zagreb eccentricity coindex is defined analogously to the second Zagreb coindex by replacing the vertex degrees with the vertex eccentricities. In this paper, we present exact expressions or sharp lower bounds for the second Zagreb eccentricity co...

متن کامل

Max-semistability: a survey

Abstract. In the classical limit theory for normalized sums of independent random variables we change the operation ”sum” by the operation “maximum”. How does it change the classical structure of the limit probability laws? The max-model enriches Probability Theory with interesting non-classical phenomena. Several of them will be discussed here. As an example for characterizing a limit class of...

متن کامل

Antipodal of Graph Products

The antipodal graph of a graph G, denoted by A(G), is the graph on the same vertices as ofG, two vertices being adjacent if the distance between them is equal to the diameter of G. A graph is said to be antipodal if it is the antipodal graph A(H) of some graph H . In this paper, we consider four kinds of graph products and introduce the antipodal graph of each product with respect to the antipo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2022

ISSN: ['1532-4125', '0092-7872']

DOI: https://doi.org/10.1080/00927872.2022.2149767